36 research outputs found

    Scaling of Fracture Strength in Disordered Quasi-Brittle Materials

    Full text link
    This paper presents two main results. The first result indicates that in materials with broadly distributed microscopic heterogeneities, the fracture strength distribution corresponding to the peak load of the material response does not follow the commonly used Weibull and (modified) Gumbel distributions. Instead, a {\it lognormal} distribution describes more adequately the fracture strengths corresponding to the peak load of the response. Lognormal distribution arises naturally as a consequence of multiplicative nature of large number of random distributions representing the stress scale factors necessary to break the subsequent "primary" bond (by definition, an increase in applied stress is required to break a "primary" bond) leading up to the peak load. Numerical simulations based on two-dimensional triangular and diamond lattice topologies with increasing system sizes substantiate that a {\it lognormal} distribution represents an excellent fit for the fracture strength distribution at the peak load. The second significant result of the present study is that, in materials with broadly distributed microscopic heterogeneities, the mean fracture strength of the lattice system behaves as μf=μf⋆(LogL)ψ+cL\mu_f = \frac{\mu_f^\star}{(Log L)^\psi} + \frac{c}{L}, and scales as μf≈1(LogL)ψ\mu_f \approx \frac{1}{(Log L)^\psi} as the lattice system size, LL, approaches infinity.Comment: 24 pages including 11 figure

    A Fast and Efficient Algorithm for Slater Determinant Updates in Quantum Monte Carlo Simulations

    Full text link
    We present an efficient low-rank updating algorithm for updating the trial wavefunctions used in Quantum Monte Carlo (QMC) simulations. The algorithm is based on low-rank updating of the Slater determinants. In particular, the computational complexity of the algorithm is O(kN) during the k-th step compared with traditional algorithms that require O(N^2) computations, where N is the system size. For single determinant trial wavefunctions the new algorithm is faster than the traditional O(N^2) Sherman-Morrison algorithm for up to O(N) updates. For multideterminant configuration-interaction type trial wavefunctions of M+1 determinants, the new algorithm is significantly more efficient, saving both O(MN^2) work and O(MN^2) storage. The algorithm enables more accurate and significantly more efficient QMC calculations using configuration interaction type wavefunctions

    Statistical properties of fracture in a random spring model

    Get PDF
    Using large scale numerical simulations we analyze the statistical properties of fracture in the two dimensional random spring model and compare it with its scalar counterpart: the random fuse model. We first consider the process of crack localization measuring the evolution of damage as the external load is raised. We find that, as in the fuse model, damage is initially uniform and localizes at peak load. Scaling laws for the damage density, fracture strength and avalanche distributions follow with slight variations the behavior observed in the random fuse model. We thus conclude that scalar models provide a faithful representation of the fracture properties of disordered systems.Comment: 12 pages, 17 figures, 1 gif figur

    Crack avalanches in the three dimensional random fuse model

    Full text link
    We analyze the scaling of avalanche precursors in the three dimensional random fuse model by numerical simulations. We find that both the integrated and non-integrated avalanche size distributions are in good agreement with the results of the global load sharing fiber bundle model, which represents the mean-field limit of the model.Comment: 6 pages, 2 figures, submitted for the proceedings of the conference "Physics Survey of Irregular Systems", in honor of Bernard Sapova

    Role of the sample thickness in planar crack propagation

    Get PDF
    We study the effect of the sample thickness in planar crack front propagation in a disordered elastic medium using the random fuse model. We employ different loading conditions and we test their stability with respect to crack growth. We show that the thickness induces characteristic lengths in the stress enhancement factor in front of the crack and in the stress transfer function parallel to the crack. This is reflected by a thickness-dependent crossover scale in the crack front morphology that goes from from multiscaling to self-affine with exponents, in agreement with line depinning models and experiments. Finally, we compute the distribution of crack avalanches, which is shown to depend on the thickness and the loading mode.Peer reviewe

    Crack roughness and avalanche precursors in the random fuse model

    Get PDF
    We analyze the scaling of the crack roughness and of avalanche precursors in the two dimensional random fuse model by numerical simulations, employing large system sizes and extensive sample averaging. We find that the crack roughness exhibits anomalous scaling, as recently observed in experiments. The roughness exponents (ζ\zeta, ζloc\zeta_{loc}) and the global width distributions are found to be universal with respect to the lattice geometry. Failure is preceded by avalanche precursors whose distribution follows a power law up to a cutoff size. While the characteristic avalanche size scales as s0∼LDs_0 \sim L^D, with a universal fractal dimension DD, the distribution exponent τ\tau differs slightly for triangular and diamond lattices and, in both cases, it is larger than the mean-field (fiber bundle) value τ=5/2\tau=5/2

    Effect of Disorder and Notches on Crack Roughness

    Get PDF
    We analyze the effect of disorder and notches on crack roughness in two dimensions. Our simulation results based on large system sizes and extensive statistical sampling indicate that the crack surface exhibits a universal local roughness of ζloc=0.71\zeta_{loc} = 0.71 and is independent of the initial notch size and disorder in breaking thresholds. The global roughness exponent scales as ζ=0.87\zeta = 0.87 and is also independent of material disorder. Furthermore, we note that the statistical distribution of crack profile height fluctuations is also independent of material disorder and is described by a Gaussian distribution, albeit deviations are observed in the tails.Comment: 6 pages, 6 figure

    Sub-matrix updates for the Continuous-Time Auxiliary Field algorithm

    Full text link
    We present a sub-matrix update algorithm for the continuous-time auxiliary field method that allows the simulation of large lattice and impurity problems. The algorithm takes optimal advantage of modern CPU architectures by consistently using matrix instead of vector operations, resulting in a speedup of a factor of ≈8\approx 8 and thereby allowing access to larger systems and lower temperature. We illustrate the power of our algorithm at the example of a cluster dynamical mean field simulation of the N\'{e}el transition in the three-dimensional Hubbard model, where we show momentum dependent self-energies for clusters with up to 100 sites

    Fracture roughness in three-dimensional beam lattice systems

    Get PDF
    We study the scaling of three-dimensional crack roughness using large-scale beam lattice systems. Our results for prenotched samples indicate that the crack surface is statistically isotropic, with the implication that experimental findings of anisotropy of fracture surface roughness in directions parallel and perpendicular to crack propagation is not due to the scalar or vectorial elasticity of the model. In contrast to scalar fuse lattices, beam lattice systems do not exhibit anomalous scaling or an extra dependence of roughness on system size. The local and global roughness exponents (ζloc and ζ, respectively) are equal to each other, and the three-dimensional crack roughness exponent is estimated to be ζloc=ζ=0.48±0.03. This closely matches the roughness exponent observed outside the fracture process zone. The probability density distribution p[Δh(ℓ)] of the height differences Δh(ℓ)=[h(x+ℓ)−h(x)] of the crack profile follows a Gaussian distribution, in agreement with experimental results.Peer reviewe

    Role of disorder in the size-scaling of material strength

    Get PDF
    We study the sample size dependence of the strength of disordered materials with a flaw, by numerical simulations of lattice models for fracture. We find a crossover between a regime controlled by the fluctuations due to disorder and another controlled by stress-concentrations, ruled by continuum fracture mechanics. The results are formulated in terms of a scaling law involving a statistical fracture process zone. Its existence and scaling properties are only revealed by sampling over many configurations of the disorder. The scaling law is in good agreement with experimental results obtained from notched paper samples.Comment: 4 pages 5 figure
    corecore